Integrative drug safety research in translational health informatics has rapidly evolved and included data that are drawn in from many resources, combining diverse data that are either reused from (curated) repositories, or newly generated at source. Each resource is mandated by different sets of metadata rules that are imposed on the incoming data. Combination of the data cannot be readily achieved without interference of data stewardship and the top-down policy guidelines that supervise and inform the process for data combination to aid meaningful interpretation and analysis of such data. The eTRANSAFE Consortium’s effort to drive integrative drug safety research at a large scale hereby present the lessons learnt and the proposal of solution at the guidelines in practice at this Innovative Medicines Initiative (IMI) project. Recommendations in these guidelines were compiled from feedback received from key stakeholders in regulatory agencies, EFPIA companies, and academic partners. The research reproducibility guidelines presented in this study lay the foundation for a comprehensive data sharing and knowledge management plans accounting for research data management in the drug safety space – FAIR data sharing guidelines, and the model verification guidelines as generic deliverables that best practices that can be reused by other scientific community members at large. FAIR data sharing is a dynamic landscape that rapidly evolves with fast-paced technology advancements. The research reproducibility in drug safety guidelines introduced in this study provides a reusable framework that can be adopted by other research communities that aim to integrate public and private data in biomedical research space.